手机浏览器扫描二维码访问
只要按照他的要求,把成绩搞出来,其他方面老张是真的特别宽容。
乔喻觉得他就算无聊到把铁一中的招牌给拆下来几个,老张都会笑着让学校后勤部去做个新的,然后对他说一句下不为例。
在燕北大学图书馆的论文检索系统搜索了罗伯特·格林的名字,一下子出现了一堆的论文。
把乔喻吓了一跳。
不过很快发现原来并不都是一个人的。
国外叫罗伯特·格林的人看来很多。
虽然搜索彼得·舒尔茨的时候也碰到过类似问题,但只有一个干扰项,而且那个家伙还是研究化学的。
论文方向完全不同。
但罗伯特这家伙,好多都是数学向的论文。
好在乔喻发现这套论文检索系统其实很好用,不但内容丰富,而且还可以自行选择年限,高级检索页面甚至支持作者单位的搜索。
乔喻记得老薛说过这位教授是纽约大学的,这就方便多了。
很快,正经罗伯特教授的论文便下载好了。
不知道是不是因为先研究彼得·舒尔茨的论文,让乔喻脑袋又开了一次窍,乔喻竟然觉得关于这位教授的论文理解起来好像挺容易的。
好吧,说容易似乎有些飘了,但起码不难。
比如乔喻是真觉得那些引理丶定理的前置条件,一系列概念,以及证明过程都很容易就能理解。
不需要耗费太多脑细胞就能看明白。
不过这样劳逸结合还挺好的。
昨天看彼得·舒尔茨的论文的确太费脑子了,今天读不那麽难以理解的论文权当放松。
只是虽然放松,但乔喻老老实实把两篇论文读完也已经是晚上九点了,中间就去吃了顿晚餐。
放下论文,乔喻又开始习惯性思考,突然脑子里有了个想法。
罗伯特教授研究的内容说白了就是给定类型的代数曲线尤其是高维代数曲线的有理点个数上界的精确预估问题,这类型问题其实跟丢番图方程密切相关。
寻找有理点的数量,然后研究这些有理数点的分布情况。
无非就是高维代数簇的几何结构往往更为复杂,具有更复杂的奇点丶拓扑性质以及不同的同调性质,这些几何特性都在影响了有理点的分布。
所以这类问题的研究目标其实只有一个,尽量简化寻找有理数点的过程,并能很轻松的找到其有理数点的分布。
相当于给定一个高次的丢番图方程,能快速判定是否有解,并将这类方程解出来。
好吧,总之乔喻是这样理解的。
这就是一个数学门外汉的认知了,如果此时老薛在这里,听完乔喻的想法,大概会想直接把这个不知道天高地厚的家伙揍一顿。
原因也很简单,研究目标简直太扯了。
简化寻找有理点的过程,但是想要轻松地找到有理点的分布在高维代数簇上几乎就是不可能的,这是数学常识。
现在大家做的无非是过几何和代数工具高效估计有理点的数量,并通过现代代数几何工具理解它们的分布情况而已。
至于快速求解丢番图方程?
椭圆曲线的求解,或者模形式相关的更复杂的方程即便判定了有解,但真想解出来,老薛也只能说呵呵了。
当然这些对于乔喻这个对数学本就还没有太多敬畏之心的门外汉来说都不是问题,加上昨天他刚刚学习了彼得·舒尔茨的数学思想,一个很大胆的想法,突然就从乔喻脑子里冒了出来,且一发不可收拾。
为什麽他不能尝试用彼得·舒尔茨创造的理论来解决这一类问题呢?
先不管行不行,可以尝试着把完备空间引入其中,没有合适的工具来处理类似问题,但他也可以自己来创造嘛。
虽然这是人家搭建的框架,但只要在这个框架内,符合这个框架的规则,来进行工具创造,只要能解决问题,肯定也是可行的。
那麽现在摆在乔喻面前的问题就很简单了,如何把有代数曲线有理数点上界估计这个问题,引入到似完备空间理论的框架中来?初生牛犊不怕虎的乔喻坐在桌前陷入了沉思。
一支笔也开始在稿纸上乱画起来。
好吧...
这个问题似乎不那麽简单,主要是问题的转化。
想了很久,乔喻得出了一个结论,如果可以把有理数点上界估计转化为在完备几何对象上的同调和几何性质的问题,那麽就可以顺理成章的使用p进几何的深层工具,例如完备代数空间丶模形式的几何化丶以及p进同调理论,来分析这些有理数点。
一朝穿越,医学女博士凤颜玉发现自己肚子里揣着崽正在结婚的路上。未婚先孕可不提倡啊!更何况是在古代!等等等啊!我还在花轿里啊!怎么就要生了!新婚夜刚卸完货,丞相夫君就踹开门,告诉自己娶她是为了白月光的解药。傻子公主被篡位的皇帝嫌弃,丞相夫君对自己冷眼相待,白月光伪善只会装柔弱哭唧唧。狗男人真烦,带着白月光快滚吧。和离不算事儿,萌宝一抱,逍遥去了。后来,当他得知所有的真相,以江山为聘,求娶她为妻。颜颜,给我一个机会。这天下是你的,我也是你的。回头看我一眼,好不好?俩萌宝滚!江山留下!人滚蛋!...
豪门总裁娱乐圈甜宠双洁爽文温然为了买回已故妈妈的嫁妆,转身投进了娱乐圈,结果混的一塌糊涂。于是找上了有钱有颜又有权的商景驰。听闻商景驰有个爱而不得的白月光,温然依着在替身培训班学习的技能,成功当起了他的替身女友。每天在他面前示弱撒娇装可怜,把自己伪装成清纯无害的小白花。从此娱乐圈各种资源手到擒来,事业蒸蒸日上。可渐渐的,温然发现商景驰对她的占有欲越来越强,甚至想要掌控她的一切,让她无法忍受。直到商景驰的白月光再次出现。温然自觉的留下发票和信封,与商景驰彻底划清了界限。而商景驰得知温然离开的消息,彻底爆发,疯了一样满世界的寻找温然。他发誓,若是找到了。绝不让温然再离开自己身边半步。...
因为一款游戏,身为普通人的鹿任与血族扯上了关联。这是一个很清晰明了的故事,主人公在血族所居住之地演绎着无限欢乐的日常,有突如其来的事件,也有意想不到的展开,有亲情,有爱情,有友情,有基情。各种乱入,各色吐槽。带给各位一个轻松欢乐的血族生活。...
穿越到一个有着各种奇怪能力,灾难生物,厄运宝具的危险世界。方泽只想觉醒个超凡能力,当个普通的探员,吃吃皇粮,好好的活下去。结果,他却发现,一切好像都不能如他所愿奇怪的能力宝具有种在身上就可以永葆青...
蝴蝶的翅膀可以带来龙卷风,田野的双手也必定能撼动整个篮球世界。他们一路曲折,但他们无坚不摧。这是我们大家的篮球。...
他是惊才绝艳的齐王,她被迫嫁给他冲喜。他还是死了。她当了三年的寡妇,乐得自在,可谁想,她却突然被人盯上了。苏语恐慌,想跑。他戴着面具,跑哪去?她问你到底是谁?当他的身份揭开,苏语气炸了。他拥她入怀,不气,本王给你买了一条街。她横眉竖眼。不够?那就送你整个天下。...